Tetrahedron 67 (2011) 7090-7095

Contents lists available at ScienceDirect

Tetrahedron

A novel Friedlander-type synthesis of 3-aryl quinolines from 3-oxo-2,3-diarylpropionaldehydes

Wanrong Luo^a, Qiuchao Mu^a, Wenwei Qiu^b, Ting Liu^a, Fan Yang^a, Xiaofeng Liu^{c,*}, Jie Tang^{a,*}

^a Institute of Drug Design and Development, East China Normal University, Shanghai 200062, China
^b Department of Chemistry, East China Normal University, Shanghai 200062, China

^c Reata Pharmaceuticals, Inc. 2801 Gateway Drive, Suite 150, Irving, TX 75063, USA

ARTICLE INFO

Article history: Received 10 April 2011 Received in revised form 27 June 2011 Accepted 1 July 2011 Available online 6 July 2011

Keywords: Novel Friedländer-type reaction 3-Aryl quinolines Enaminone 3-oxo-2,3-diaryl-propionaldehydes

ABSTRACT

3-Aryl quinolines are readily synthesized by a novel Friedländer-type reaction with 3-oxo-2,3-diarylpropionaldehydes and 2-amino arylaldehydes. A preliminary mechanism of this novel one pot, two-step synthesis has been explored with the proofs of isolation of the enaminone intermediate and the eliminated benzoic acid in this reaction.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Many quinoline containing compounds exhibit a wide variety of pharmacological and biological activities,¹ such as antiasthmatic,² anti-inflammatory,³ anti-HIV-1⁴ and tyrosine kinase inhibiting properties.⁵ Therefore, exploration of efficient synthetic methods to construct quinoline framework has continually drawn great attentions for many decades. As a result, many quinoline syntheses, such as Combes, Skraup, Döbner-Von Miller, Conrad-Limpach, Pfitzinger, Friedländer and Povarov reactions, etc. have been developed.⁶ However, many of these classic synthetic approaches suffer from limited source of precursors, harsh reaction conditions, low yields or selectivity. Hence, variant or modified approaches of these classic quinoline syntheses continue to emerge with significant improvements in terms of the synthetic feasibility. For instance, some modified Friedländer syntheses have been recently described, either catalyzed with organometal catalysts, such as ruthenium,⁷ or without expensive transition metal catalysts.⁸ By using these methods, 2-substituted or 2,3-substituted quinolines could be successfully synthesized in good yields.

In our recent work for preparation of biological active heterocycles, we expected to synthesize a series of 3-aryl substituted quinolines by the Friedländer approach. However, the less accessibility of aryl acetaldehydes combined with the instability of oamino arvlaldehvdes under the reaction conditions indicated less feasible syntheses with unsatisfactory yields. These disadvantages urged us to seek a new, mild condition variation of the Friedländer synthesis with readily available precursors to achieve our target compounds. It is known that less reactive α -methylenecarbonyl counterparts (e.g., aryl acetaldehydes) usually require more drastic reaction conditions, therefore increase the self-condensation tendency of o-amino arylaldehydes and thus result in low yields. In light of this mechanism understanding, we envisaged that replacing the hydrogen with an electron-withdrawing group on the α methylene position of aryl acetaldehydes could activate these reactants, thus milder reaction conditions could be employed to diminish the yield deterioration caused by o-amino arylaldehydes self-condensation. Importantly, this introduced auxiliary electronwithdrawing group should be readily eliminated under the same reaction conditions after fulfilling its mission. Herein, we describe a new Friedländer-type approach to synthesize 3-aryl quinolines starting from 3-oxo-2,3-diaryl-propionaldehydes, which could be obtained efficiently from chalcone epoxides.⁹ The auxiliary acyl (substituted benzoyl) groups eliminate during the reactions to give the same products while the normal aryl acetaldehydes are used as precursors (Scheme 1). To the best of our knowledge, this novel modification of the Friedländer-type quinoline synthesis is the first report of its type.

^{*} Corresponding authors. Tel.: +86 21 62232764; fax: +86 21 62232100; e-mail addresses: xiaofeng.liu@reatapharma.com (X. Liu), jtang@chem.ecnu.edu.cn (J. Tang).

^{0040-4020/\$ –} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2011.07.004

Scheme 1. Synthesis of 3-aryl quinolines.

2. Results and discussion

We started our investigation by subjecting our model substrates, 3-oxo-2,3-diphenylpropionaldehyde (1a) and o-amino benzylaldehyde (2a) to base-catalyzed Friedlander reaction conditions. Unfortunately, the reaction failed with messy results, and the selfcondensation of 2a was observed. Then, we turned our attention to the regular acid-catalyzed Friedländer conditions. Disappointingly, no quinoline product was obtained while either a Lewis acid BF₃·Et₂O or a Brønsted acid TfOH was used as the catalyst (Table 1, entries 1 and 2). Instead, an enaminone intermediate 3a (a mixture of *E*-, *Z*-isomers; $E/Z = \sim 7:3$) was isolated and identified. However, while a base KO^tBu was directly added to the reaction mixture containing the enaminone intermediate **3a**, the guinoline **4a** was formed rapidly in good yield in both cases (74% and 77%; Table 1, entries 3 and 4). Encouraged by these exciting results, we further explored the effects of various reaction parameters, such as acid catalysts (Table 1, entries 3-7), acid catalyst loading (Table 1, entries 4, 8 and 9), solvents (Table 1, entries 8 and 10-15), reaction temperature (Table 1, entries 8, 16 and 17) and bases (Table 1, entries 8 and 18–22). Under the optimized reaction (Table 1, entry 8). the quinoline 4a was obtained in high yield (82%). Compared to the modest yields (31–53%)¹⁰ achieved in classic Friedländer syntheses for the same product, this new protocol significantly improves the synthetic feasibility of 3-phenylquinoline 4a.

Since one of the reactants, 3-oxo-2,3-diphenylpropionaldehyde (**1a**), is not a typical substrate for the classic Friedländer reaction, we speculated that an unusual reaction pathway could exist. Therefore, we are especially interested in understanding the mechanism of this novel Friedländer-type reaction and collecting the evidences to support our hypothesis. Thus, we subjected the isolated enaminone intermediate **3a** to the basic reaction condition. After work-up and purification, 3-phenylquinoline **4a** was obtained in 94% yield. In addition, benzoic acid **5** was also isolated as another product of the same reaction in 88% yield (Scheme 2).

The generality of this novel modification of the Friedländer synthesis has been investigated and the results are shown in Table 2. A series of condensation partners bearing substituents with various electronic (both electronic rich and deficient) properties at different (*ortho-, meta-* and *para-*) positions on the aromatic rings were subjected to this optimized reaction system and all afforded the 3-aryl quinolines **4** in good to high yields (Table 2).

In general, the variation of electronic properties of R^1 groups only has slight influence on yields although electron-donating substituents help to achieve relatively better yields than electronwithdrawing substituents do (Table 2, entries 1–7), and the methyl group, instead of phenyl group, substituted substrate 3-oxo-2-methyl-3-phenylpropionaldehyde also gave moderate yield (Table 2, entry 16). An exception was observed that thienyl group as R^1 caused a significant decreasing in yield (Table 2, entries 13),

Table 1

Optimization of reaction conditions for a novel Friedländer-type synthesis of 3-phenylquinolines^a

Entry	Acid (mol %)	Solvent	Base	<i>T</i> (°C)	Yield ^b (%)
1	$BF_3 \cdot Et_2O(10)$	C ₆ H ₅ Cl	_	100	_
2	TfOH (10)	C ₆ H ₅ Cl	_	100	_
3	$BF_3 \cdot Et_2O(10)$	C ₆ H ₅ Cl	KO ^t Bu	100	74
4	TfOH (10)	C ₆ H ₅ Cl	KO ^t Bu	100	77
5	FeCl ₃ (10)	C ₆ H ₅ Cl	KO ^t Bu	100	66
6	TsOH (10)	C ₆ H ₅ Cl	KO ^t Bu	100	60
7	TFA (10)	C ₆ H ₅ Cl	KO ^t Bu	100	72
8	TfOH (5)	C ₆ H ₅ Cl	KO ^t Bu	100	82
9	TfOH (2)	C ₆ H ₅ Cl	KO ^t Bu	100	68
10	TfOH (5)	EtOH	KO ^t Bu	Reflux	26
11	TfOH (5)	DCE	KO ^t Bu	Reflux	65
12	TfOH (5)	CH ₃ CN	KO ^t Bu	Reflux	60
13	TfOH (5)	Toluene	KO ^t Bu	100	76
14	TfOH (5)	Dioxane	KO ^t Bu	100	63
15	TfOH (5)	DMF	KO ^t Bu	100	62
16	TfOH (5)	C ₆ H ₅ Cl	KO ^t Bu	80	78
17	TfOH (5)	C ₆ H ₅ Cl	KO ^t Bu	120	54
18	TfOH (5)	C ₆ H ₅ Cl	КОН	100	77
19	TfOH (5)	C ₆ H ₅ Cl	Li ₂ CO ₃	100	Trace
20	TfOH (5)	C ₆ H ₅ Cl	Cs ₂ CO ₃	100	75
21	TfOH (5)	C ₆ H ₅ Cl	TEA	100	Trace
22	TfOH (5)	C ₆ H ₅ Cl	DBU	100	78

^a Reaction conditions: **1a** (0.25 mmol), **2a** (0.375 mmol), solvent (1.5 mL); then base (0.5 mmol).

^b Isolated yield.

Scheme 2.

Table 2Synthesis of 3-aryl quinolines^a

$\begin{array}{c} R^{2} \\ R^{1} \\ 1(a \sim l) \end{array}$	+ NH ₂	2) KO ^t Bu, 100 °C, 10 min	4(a~j)
	· · ·		

K.	K-	K ³	Product	Yield [®] (%)
Ph	Ph	Н	4a	82
p-CH ₃ OC ₆ H ₄	Ph	Н	4b	80
m-CH ₃ OC ₆ H ₄	Ph	Н	4c	75
o-CH ₃ OC ₆ H ₄	Ph	Н	4d	76
p-CH ₃ C ₆ H ₄	Ph	Н	4e	77
p-BrC ₆ H ₄	Ph	Н	4f	77
p-FC ₆ H ₄	Ph	Н	4g	75
Ph	p-CH ₃ OC ₆ H ₄	Н	4a	72
Ph	p-CH ₃ C ₆ H ₄	Н	4a	77
Ph	p-BrC ₆ H ₄	Н	4a	86
Ph	$p-O_2NC_6H_4$	Н	4a	88
Ph	Me	Н	4a	30
Thiophene	Ph	Н	4h	61
Ph	Ph	CH ₃ O	4i	67
Ph	Ph	Br	4j	76
Me	Ph	Н	4k	67
Ph	Ph	NO_2	41	34
	$\begin{array}{c} {\sf R}^{\sf C} \\ \\ {\sf Ph} \\ {\it p-CH_3OC_6H_4} \\ {\it m-CH_3OC_6H_4} \\ {\it p-CH_3C_6H_4} \\ {\it p-BrC_6H_4} \\ {\it p-BrC_6H_4} \\ {\it Ph} \\ {\sf P$	R* R* Ph Ph $p-CH_3OC_6H_4$ Ph $m-CH_3OC_6H_4$ Ph $p-CH_3OC_6H_4$ Ph $p-CH_3C_6H_4$ Ph $p-FC_6H_4$ Ph $p-FC_6H_4$ Ph $p-CH_3C_6H_4$ Ph $p-FC_6H_4$ Ph $p-CH_3C_6H_4$ Ph $p-O_2NC_6H_4$ Ph $p-O_2NC_6H_4$ Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph Ph	R* R* K* Ph Ph Ph H p -CH ₃ OC ₆ H ₄ Ph H H m -CH ₃ OC ₆ H ₄ Ph H H n -CH ₃ OC ₆ H ₄ Ph H H p -CH ₃ O ₆ H ₄ Ph H H p -CH ₃ OC ₆ H ₄ Ph H H p -BrC ₆ H ₄ Ph H H Ph p -CH ₃ OC ₆ H ₄ H H Ph p -CH ₃ C ₆ H ₄ H H Ph p -CH ₃ C ₆ H ₄ H H Ph p -CH ₃ C ₆ H ₄ H H Ph p -O ₂ NC ₆ H ₄ H H Ph P -O ₂ NC ₆ H ₄ H H Ph Me H H H Ph Ph CH ₃ O H H Ph Ph H H H H H H H H H H H H	R* R* R* Product Ph Ph Ph H 4a p -CH ₃ OC ₆ H ₄ Ph H 4b m -CH ₃ OC ₆ H ₄ Ph H 4c o -CH ₃ OC ₆ H ₄ Ph H 4d p -CH ₃ OC ₆ H ₄ Ph H 4d p -CH ₃ C ₆ H ₄ Ph H 4g p -BrC ₆ H ₄ Ph H 4g p -FC ₆ H ₄ Ph H 4g Ph p -CH ₃ O ₆ H ₄ H 4a Ph p -CH ₃ O ₆ H ₄ H 4a Ph p -BrC ₆ H ₄ H 4a Ph p -O ₂ NC ₆ H ₄ H 4a Ph p -O ₂ NC ₆ H ₄ H 4a Ph Me H 4h Ph Ph H 4h Ph Ph H 4h Ph Ph H 4h Ph Ph H <td< td=""></td<>

 a Reaction conditions: 1 (0.5 mmol), 2 (0.75 mmol), TfOH (0.025 mmol), C_6H_5Cl (3.0 mL), 100 °C 15 h; then KO^Bu (1 mmol), 100 °C, 10 min. b Isolated yield.

which could be due to the instability of thiophene moiety under the reaction conditions to form undesired by-products. Furthermore, an electron-withdrawing removable auxiliary group R^2CO helps to increase the yield while an electron-donating one does the opposite. The trend was clearly demonstrated from the experimental results: the yields gradually deceased when R^2 was switched from a strong electron-withdrawing group (p-O₂NC₆H₄) to a strong electron-donating one (p-MeOC₆H₄) (Table 2, entries 11, 10, 1, 9 and 8); an alkyl group (Me) could significantly reduce the yield to a very low level because of its strongest electron-donating property compared to those of the aryl substituents (Table 2, entry 12 vs entries 11, 10, 1, 9 and 8). Finally, the electronic properties of R^3 groups don't have a linear effect on the yields although a strong electron-withdrawing group (p-O₂NC₆H₄) could exceptionally reduce the yield (Table 2, entries 1, 14, 15 and 17).

According to all the experimental data, we proposed a possible reaction mechanism of this novel Friedländer-type synthesis (Scheme 3): TfOH catalyzes the reaction of **1a** with **2a** to produce an isolable enaminone intermediate **3a** (a mixture of *E*-, *Z*-isomers; *E*/ $Z = \sim 7:3$) as previously described. Strong base can deprotonate **3a** to form enaminone anion **6a**, which can then tautomerize to form imine anion **7a**. The highly reactive imine anion **7a** readily undergoes an intramolecular aldol-type condensation to form a hydroxyimine anion **8**, which proceeds to a benzoate anion **10** via an unstable four-membered ring lactol intermediate **9**. The benzoate anion **10** undergoes aromatization by losing a benzoate **5**' to form the desired quinoline **4a**.

Evidences in support of this mechanistic proposal exist as follows: (1) isolated enaminone **3a** clearly self-explains that it is the reaction intermediate. (2) Strong bases can smoothly promote quinoline synthesis with high yields while weak bases only give trace amount of products (Table 1, entries 8 and 18–22). This proves that formation of enaminone anion **6a** is the rate limiting step. (3) The generation of 1 equiv of benzoic acid **5** implies the transformations from enaminone anion **6a** to the final product quinoline **4a** although more evidence collecting is in due course.

3. Conclusions

We have demonstrated a novel one pot, two-step Friedländertype reaction with broad substrate scope to synthesize 3-aryl quinolines in high yields. Since this methodology is the first report of using a type of unusual Friedländer substrates (3-oxo-2,3diaryl-propionaldehydes) for the synthesis of 3-aryl quinolines, a new pathway may exist. Therefore, we proposed a preliminary mechanism based on the experimental results. Further expending substrate scope and deeper understanding the reaction mechanism are currently undergoing in our lab.

4. Experimental

4.1. General methods

All reagents were purchased from commercial sources and used without treatment. ¹H and ¹³C NMR spectra were recorded at 400 (or 500) and 100 MHz, respectively, using TMS as the internal standard. HRMS were recorded on a Bruker micrOTOF II spectrometer (ESI ionization).

4.2. Synthesis of the enaminone intermediate 3a

3-oxo-2,3-diphenylpropionaldehyde (112 mg, 0.5 mmol) and 2aminobenzaldehyde (61 mg, 0.5 mmol) were dissolved in chlorobenzene (3.0 mL). Anhydrous MgSO₄ (180 mg) was added followed by the addition of TfOH (2.2 μ L, 0.025 mmol), and the mixture was stirred at 100 °C for 1.5 h under nitrogen atmosphere (monitored by TLC). Then the solvent was evaporated, and the crude product was purified by silica gel column chromatography with EtOAc/petroleum ether (1:5, v/v) to afford the enaminone intermediate **3a** as a yellow solid (121 mg, 69%).

4.3. General procedure for the synthesis of 3-aryl quinolines

3-oxo-2,3-diarylpropanal (0.5 mmol) and 2-aminobenzaldehyde (0.75 mmol) were dissolved in chlorobenzene (3.0 mL), TfOH (0.025 mmol) was added and the mixture was stirred at 100 °C for 1.5 h (monitored by TLC). Then KO^tBu (1.0 mmol) was added, the reaction mixture was stirred at 100 °C for another 10 min until the enaminone disappeared. The reaction mixture was extracted with ethyl acetate. The combined organic fractions were dried over anhydrous Na₂SO₄, and then evaporated in vacuo and

Scheme 3. Possible mechanism of this novel Friedländer-type synthesis.

purified by silica gel column chromatography (EtOAc/petroleum ether=1:5 to 1:10) to afford the corresponding 3-aryl quinoline.

4.3.1. 3-Phenylquinoline (**4a**)¹¹. Yellow oil; IR (KBr): ν 3058, 3032, 2925, 2853, 1493, 902, 786, 762, 697 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.18 (1H, d, *J*=2.0 Hz), 8.28 (1H, d, *J*=2.0 Hz), 8.14 (1H, d, *J*=8.0 Hz), 7.86 (1H, d, *J*=8.0 Hz), 7.73–7.69 (3H, m), 7.58–7.49 (3H, m), 7.44–7.41 (1H, m). ¹³C NMR (CDCl₃, 100 MHz) δ 149.9, 147.3, 137.9, 133.8, 133.2, 129.3, 129.2, 129.1, 128.1, 128.0 (2CH), 127.5 (2CH), 127.4, 127.0. HRMS (ESI): [M+H]⁺ calcd for C₁₅H₁₂N: 206.0964; found: 206.0987.

4.3.2. 3-(4-Methoxyphenyl)quinoline (**4b**)¹². White solid; 80% yield; mp: 80–80.5 °C; IR (KBr): ν 3068, 2995, 2957, 2935, 2827, 1609,

1520, 1492, 1287, 1249, 1185, 1029, 830, 753 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.16 (1H, d, *J*=2.2 Hz), 8.23 (1H, d, *J*=2.2 Hz), 8.12 (1H, d, *J*=8.0 Hz), 7.84 (1H, d, *J*=8.0 Hz), 7.71–7.63 (3H, m), 7.57–7.53 (1H, m), 7.06–7.04 (2H, m), 3.87 (3H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 159.9, 149.9, 147.1, 133.5, 132.4, 130.4, 129.2, 129.1, 128.6, 128.2 (2CH), 127.9, 127.0, 114.7 (2CH), 55.3.

4.3.3. 3-(3-*Methoxyphenyl*)*quinoline* (**4***c*)¹³. White solid; 75% yield; mp: 62–62.5 °C; IR (KBr): ν 3052, 3012, 2961, 2936, 2838, 1600, 1579, 1489, 1434, 1293, 1242, 1210, 1170, 1038, 874, 810, 789, 749, 699 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.17 (1H, d, *J*=2.2 Hz), 8.29 (1H, d, *J*=2.2 Hz), 8.14 (1H, d, *J*=8.0 Hz), 7.87 (1H, d, *J*=8.0 Hz), 7.74–7.70 (1H, m), 7.59–7.55 (1H, m), 7.46–7.41 (1H, m), 7.30–7.23 (2H, m), 6.99–6.97 (1H, m), 3.89(3H, s). ¹³C NMR (CDCl₃, 100 MHz) δ 160.2, 149.9, 147.4, 139.3, 133.7, 133.3, 130.2, 129.4, 129.2, 129.0, 127.9, 127.0, 119.8, 113.4, 113.2, 55.4.

4.3.4. 3-(2-*Methoxyphenyl*)*quinoline* (**4d**)¹⁴. Yellow oil; 76% yield; mp: 62–63 °C; IR (KBr): ν 3062, 3030, 3009, 2977, 2936, 2835, 1595, 1493, 1461, 1438, 1243, 1181, 1056, 1022, 952, 908, 790, 753 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.12 (1H, d, *J*=2.2 Hz), 8.25 (1H, d, *J*=2.2 Hz), 8.13 (1H, d, *J*=8.0 Hz), 7.84 (1H, d, *J*=8.0 Hz), 7.72–7.68 (1H, m), 7.56–7.52 (1H, m), 7.43–7.38 (2H, m), 7.12–7.03 (2H, m), 3.83 (3H, s). ¹³C NMR (CDCl₃, 100 MHz) δ 156.7, 152.0, 146.8, 135.4, 131.6, 130.9, 129.6, 129.1, 129.1, 127.9, 127.1, 126.5, 121.1 (2CH), 111.2, 55.5.

4.3.5. 3-(4-Tolyl)quinoline (**4e**)¹⁵. White solid; 77% yield; mp: 81–81.5 °C; IR (KBr): ν 3063, 3022, 2953, 2923, 2853, 1491, 1340, 953, 908, 815, 786, 749 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.17 (1H, d, *J*=2.0 Hz), 8.27 (1H, s), 8.13 (1H, d, *J*=8.0 Hz), 7.86 (1H, d, *J*=8.0 Hz), 7.72–7.54 (4H, m), 7.34–7.32 (2H, m), 2.43 (3H, s). ¹³C NMR (CDCl₃, 100 MHz) δ 150.0, 147.3, 138.1, 135.1, 133.9, 132.9, 130.0, 129.3 (2CH), 129.2, 128.2, 128.0, 127.3 (2CH), 127.0, 21.1. HRMS (ESI): [M+H]⁺ calcd for C₁₆H₁₄N: 220.1121; found: 220.1105.

4.3.6. 3-(4-Bromophenyl)quinoline (**4f**). White solid; 77% yield; mp: 141–141.5 °C; IR (KBr): ν 3059, 3030, 1492, 1431, 1354, 1078, 1006, 954. 906, 823, 785, 750 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.13 (1H, d, *J*=2.2 Hz), 8.26 (1H, d, *J*=2.2 Hz), 8.14 (1H, d, *J*=8.0 Hz), 7.87 (1H, d, *J*=8.0 Hz), 7.75–7.71 (1H, m), 7.66–7.63 (2H, m), 7.60–7.56 (3H, m). ¹³C NMR (CDCl₃, 100 MHz) δ 149.4, 147.5, 136.8, 133.1, 132.6 (2CH), 132.3, 129.6, 129.3, 129.0 (2CH), 128.0, 127.9, 127.2, 122.5. HRMS (ESI): [M+H]⁺ calcd for C₁₅H₁₁BrN: 284.0075; found: 284.0088.

4.3.7. 3-(4-Fluorophenyl)quinoline (**4g**)¹². White solid; 75% yield; mp: 105–105.4 °C; IR (KBr): ν 3065, 3047, 3025, 1603, 1518, 1494, 1237, 1166, 951, 905, 832, 747 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.13 (1H, d, *J*=2.2 Hz), 8.25 (1H, d, *J*=2.2 Hz), 8.14 (1H, d, *J*=8.0 Hz), 7.87 (1H, d, *J*=8.0 Hz), 7.74–7.65 (3H, m), 7.60–7.56 (1H, m), 7.23–7.19 (2H, m). ¹³C NMR (CDCl₃, 100 MHz) δ 164.3, 161.8, 149.8, 147.4, 134.1, 133.1, 133.0, 129.5, 129.3, 129.2, 129.1, 128.0, 127.2, 116.3, 116.1. HRMS (ESI): [M+H]⁺ calcd for C₁₅H₁₁FN: 224.0876; found: 224.0897.

4.3.8. 3-(*Thiophen-2-yl*)*quinoline* (**4h**). White solid; 61% yield; mp: 70–70.3 °C; IR (KBr): ν 3065, 3034, 2983, 2920, 1492, 1429, 1346, 824, 782, 749, 692 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.21 (1H, d, *J*=2.2 Hz), 8.27 (1H, d, *J*=2.2 Hz), 8.10 (1H, d, *J*=8.0 Hz), 7.83 (1H, d, *J*=8.0 Hz), 7.71–7.67 (1H, m), 7.57–7.49 (2H, m), 7.40–7.39 (1H, m), 7.17–7.15 (1H, m). ¹³C NMR (CDCl₃, 100 MHz) δ 148.6, 147.3, 140.7, 131.3, 129.3, 129.3, 128.4, 127.9, 127.8, 127.5, 127.2, 126.1, 124.4.

4.3.9. 6-*Methoxy*-3-*phenylquinoline* (**4i**)¹⁶. White solid; 67% yield; mp: 120–122 °C; IR (KBr): ν 3056, 2996, 2964, 2923, 2851, 1621, 1502, 1456, 1246, 1216, 1027, 901, 829, 700 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.02 (1H, d, *J*=2.2 Hz), 8.19 (1H, d, *J*=2.2 Hz), 8.03–8.01 (1H, m), 7.71–7.69 (2H, m), 7.54–7.50 (2H, m), 7.45–7.41 (1H, m), 7.38–7.35 (1H, m), 7.13–7.12 (1H, m), 3.95 (3H, s). ¹³C NMR (CDCl₃, 100 MHz) δ 158.2, 147.5, 138.1, 134.2, 132.1, 130.7, 129.2 (2CH), 129.1 (2CH), 128.1, 127.5 (2CH), 122.2, 105.3, 55.5.

4.3.10. 6-Bromo-3-phenylquinoline (**4j**). White solid; 76% yield; mp: 114–114.5 °C; IR (KBr): ν 3055, 3037, 2956, 2924, 2853, 1594, 1483, 1451, 1398, 1330, 1059, 954, 891, 826, 757, 700 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 9.17 (1H, d, *J*=2.2 Hz), 8.18 (1H, d, *J*=2.2 Hz), 8.03–7.99 (2H, m), 7.79–7.76 (1H, m), 7.70–7.68 (2H, m), 7.55–7.51 (2H, m), 7.47–7.44 (1H, m). ¹³C NMR (CDCl₃, 100 MHz) δ 150.3,

145.8, 137.3, 134.7, 132.8, 132.0, 130.9, 129.9, 129.3 (2CH), 129.2, 128.4, 127.5 (2CH), 120.9.

4.3.11. 3-Methylquinoline (**4k**)¹⁷. Yellow oil; 67% yield; IR (KBr): ν 3064, 3031, 2921, 2857, 1495,1400, 1328, 1123, 977, 887, 785, 749 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) : δ 8.76 (s, 1H), 8.06 (d, *J*=8.4 Hz, 1H), 7.89 (s, 1H), 7.72 (d, *J*=8.1 Hz, 1H), 7.65 (m, 1H), 7.49 (m, 1H), 2.50 (s, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ 152.4, 146.5, 134.6, 130.4, 129.1, 128.4, 128.1, 127.1, 126.5, 18.7.

4.3.12. 6-Nitro-3-phenylquinoline (**41**). White solid; 34% yield; mp: 159–161 °C; IR (KBr): ν 3055, 3037, 2956, 2924, 2853, 1606, 1518, 1489, 1440, 1420, 1348, 1085, 934, 911, 826, 751, 690 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz): δ 9.35 (d, *J*=2.5 Hz, 1H), 8.86 (d, *J*=2.5 Hz, 1H), 8.49–8.47 (m, 2H), 8.29–8.27 (m, 1H), 7.74–7.73 (m, 2H), 7.59–7.56 (m, 2H), 7.52–7.49 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 153.5, 149.2, 146.0, 136.7, 135.8, 134.6, 131.2, 129.5, 129.0, 127.6, 127.05, 124.8, 122.8. HRMS (ESI) for C₁₅H₁₁N₂O₂ [M+H]⁺: calcd 251.0815, found 251.0812.

4.3.13. (E)-2-(3-Oxo-2,3-diphenylprop-1-enylamino)benzaldehyde (E-3a) with (Z)-2-(3-oxo-2,3-diphenylprop-1-enylamino)benzalde*hyde* (*Z*-**3***a*). Yellow solid. ¹H NMR (CDCl₃, 500 MHz) δ 13.38 (0.3H, d, J=12.5 Hz, NH of Z-Configuration), 10.78 (0.7H, d, J=13.0 Hz, NH of E-Configuration), 10.5 (0.3H, s, CHO of Z-Configuration), 9.75 (0.7H, s, CHO of E-Configuration), 8.01 (0.7H, d, J=13.0 Hz, =CH-N of E-Configuration), 7.71 (0.3H, d, J=8.0 Hz, =CH-N of Z-Configuration), 7.66-7.63 (2.1H, m,), 7.58-7.55 (0.9H, m), 7.53-7.42 (4H, m), 7.38 (3H, t, J=7.5 Hz), 7.30 (0.3H, t, J=7.5 Hz), 7.25-7.11 (3H, m), 7.05 (0.7H, t, I=7.5 Hz). ¹³C NMR (CDCl₃, 100 MHz) δ 194.7 (0.7C, C=0 of E-Configuration), 194.6 (0.3C, C=O of Z-Configuration), 194.3 (0.7C, CHO of E-Configuration), 193.2 (0.3C, CHO of E-Configuration), 142.9 (0.7C), 142.2 (0.3C), 141.1 (0.3C), 140.2 (0.7C), 140.1 (0.3C), 139.5 (0.7C), 136.6 (0.3C), 136.5 (0.7C), 136.0 (0.7C), 135.5 (0.3C), 134.2 (0.7C), 130.8 (0.6C), 130.6 (0.3C), 130.2 (0.6C), 129.5 (0.6C), 129.3 (0.6C), 129.2 (1.4C), 129.1 (1.4C), 128.4 (1.4C), 128.1 (1.4C), 128.0 (1.4C), 127.5 (0.6C), 126.3 (0.7C), 122.2 (0.3C), 121.6 (0.3C), 121.0 (0.7C), 120.4 (0.7C), 116.1 (0.3C), 113.2 (0.3C), 112.8 (0.7C). HRMS (ESI) for C₂₂H₁₇NO₂Na [M+Na]⁺: calcd 350.1175, found 350.1187.

Acknowledgements

This research was financially supported by the National Nature Science Foundation of China (Grant No. 20772032), Shanghai Key Laboratory of Green Chemistry and Chemical Processes and Shanghai Science and Technology Council (Nos. 09142200800 and 10142200800 (gs3)). We also thank the Laboratory of Organic Functional Molecules, Sino-French Institute of ECNU for support.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tet.2011.07.004.

References and notes

- (a) Gildchrist, T. L. Heterocyclic Chemistry, 1st ed.; Pitman Publishing LTD: London, 1985; (b) Joshi, A. A.; Narkhede, S. S.; Viswanathan, C. L. Bioorg. Med. Chem. Lett. 2005, 15, 73–76; (c) Roma, G.; Di Braccio, M.; Grossi, G.; Mattioli, F.; Ghia, M. Eur. J. Med. Chem. 2000, 35, 1021–1035; (d) Narender, P.; Srinivas, U.; Ravinder, M.; Rao, B. A.; Ramesh, C.; Harakishore, K.; Gangadasu, B.; Murthy, U. S. N.; Rao, V. J. Bioorg. Med. Chem. 2006, 14, 4600–4609; (e) Martirosyan, A. R.; Rahim-Bata, R.; Freeman, A. B.; Clarke, C. D.; Howard, R. L.; Strobl, J. S. Biochem. Pharmacol. 2004, 68, 1729–1738.
- Dube, D.; Blouin, M.; Brideau, C.; Chan, C.; Desmarais, S.; Ethier, D.; Falgueyret, J. P.; Friesen, R. W.; Girard, M.; Girard, Y.; Guay, J.; Tagari, P.; Young, R. N. *Biorg. Med. Chem. Lett.* **1998**, 8, 1255–1260.
- 3. Kalluraya, B.; Sreevinasa, S. Farmaco 1998, 53, 399-404.

7094

- 4. Strekowski, L.; Mokrosz, J. L.; Honkan, V. A.; Czarny, A.; Cegla, M. T.; Wydra, R. L.; Patterson, S. E.; Schinazig, R. F. J. Med. Chem. 1991, 34, 1739-1746.
- Maguire, M. P.; Sheets, K. R.; McVety, K.; Spada, A. P.; Zilberstein, A. J. Med. 5. Chem. 1994, 37, 2129-2137.
- (a) Manske, R. H. Chem. Rev. **1942**, 30, 113–114; (b) Bergström, F. W. Chem. Rev. 6. 1944, 35, 77-277; (c) Povarov, L. S. Russ. Chem. Rev. 1967, 36, 656-670; (d) Hisano, T. Org. Prep. Proced. Int. 1973, 5, 145-193; (e) Thummel, R. P. Synlett **1992**, 1–12; (f) Chan, B. K.; Ciufolini, M. A. J. Org. Chem. **2007**, 72, 8489–8495; (g) Hormi, O. E.; Peltonen, C.; Heikkila, L. J. Org. Chem. 1990, 55, 2513-2515; (h) Zong, R.; Zhou, H.; Thummel, R. P. J. Org. Chem. **1008**, *53*, 2313–4337; (i) Ivachtchenko, A. V.; Kobak, V. V.; Ilyin, A. P.; Khvat, A. V.; Kysil, V. M.; Williams, C. T.; Kuzovkova, J. A.; Kravchenko, D. V. J. Comb. Chem. **2005**, 7, 227–235; (j) Hadden, M.; Stevenson, P. J. *Tetrahedron Lett.* **1999**, 40, 1215–1218; (k) Powell, D. A.; Batey, R. A. Org. Lett. **2002**, *4*, 2913–2916; (I) Cho, I. S.; Gong, L.; Mu-chowski, J. M. J. Org. Chem. **1991**, *56*, 7288–7291; (m) Riesgo, E. C.; Jin, X.; Thummel, R. P. J. Org. Chem. **1996**, *61*, 3017–3022; (n) Wu, Y.; Liu, L.; Li, H.; Minamikawa, J.-I. *Tetrahedron Lett.* **2000**, *41*, 8523–8525.
- 7. (a) Vander Mierde, H.; Van Der Voort, P.; De Vos, D.; Verpoort, F. Eur. J. Org. Chem. 2008, 1625–1631; (b) Vander Mierde, H.; Ledoux, N.; Allaert, B.; Van Der Voort, P.; Drozdzak, R.; De Vos, D.; Verpoort, F. New J. Chem. 2007, 31, 1572-1574.
- Vander Mierde, H.; Van Der Voort, P.; Verpoort, F. Tetrahedron Lett. 2008, 49, 8. 6893-6895.
- 9 Mathew, P.; Mathew, D.; Asokan, C. V. Synth. Commun. 2007, 37, 661-665.
- 10. Muchowski, J. M.; Maddox, M. L. Can. J. Chem. 2004, 82, 461–478.
- 11. Hogan, A. M. L.; O'Shea, D. F. Org. Lett. 2006, 8, 3769-3772.
- Denmark, S. E.; Smith, R. C.; Chang, W. T. T.; Muhuhi, J. M. J. Am. Chem. Soc. 12. 2009. 131. 3104-3118.
- 13. Rueping, M.; Theissmann, T.; Raja, S.; Bats, J. W. Adv. Synth. Catal. 2008, 350, 1001-1006.
- Pena, M. A.; Sestelo, J. P.; Sarandeses, L. A. J. Org. Chem. 2007, 72, 1271–1275.
 Dawood, K. M.; El-Deftar, M. M. ARKIVOC 2010, 9, 319–330.
- Wang, Y.; Xin, X.; Liang, Y. J.; Lin, Y. G.; Zhang, R.; Dong, D. W. Eur. J. Org. Chem. 16. 2009. 24. 4165-4169.
- 17. Huiban, M.; Huet, A.; Barré, L.; Sobrio, F.; Fouquet, E.; Perrio, C. Chem. Commun. 2006, 97-99.